Auditory thalamocortical transmission is reliable and temporally precise.

نویسندگان

  • Heather J Rose
  • Raju Metherate
چکیده

We have used the auditory thalamocortical slice to characterize thalamocortical transmission in primary auditory cortex (ACx) of the juvenile mouse. "Minimal" stimulation was used to activate medial geniculate neurons during whole cell recordings from regular-spiking (RS cells; mostly pyramidal) and fast-spiking (FS, putative inhibitory) neurons in ACx layers 3 and 4. Excitatory postsynaptic potentials (EPSPs) were considered monosynaptic (thalamocortical) if they met three criteria: low onset latency variability (jitter), little change in latency with increased stimulus intensity, and little change in latency during a high-frequency tetanus. Thalamocortical EPSPs were reliable (probability of postsynaptic responses to stimulation was approximately 1.0) as well as temporally precise (low jitter). Both RS and FS neurons received thalamocortical input, but EPSPs in FS cells had faster rise times, shorter latencies to peak amplitude, and shorter durations than EPSPs in RS cells. Thalamocortical EPSPs depressed during repetitive stimulation at rates (2-300 Hz) consistent with thalamic spike rates in vivo, but at stimulation rates > or = 40 Hz, EPSPs also summed to activate N-methyl-D-aspartate receptors and trigger long-lasting polysynaptic activity. We conclude that thalamic inputs to excitatory and inhibitory neurons in ACx activate reliable and temporally precise monosynaptic EPSPs that in vivo may contribute to the precise timing of acoustic-evoked responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input.

Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils...

متن کامل

Intrinsic modulators of auditory thalamocortical transmission.

Neurons in layer 4 of the primary auditory cortex receive convergent glutamatergic inputs from thalamic and cortical projections that activate different groups of postsynaptic glutamate receptors. Of particular interest in layer 4 neurons are the Group II metabotropic glutamate receptors (mGluRs), which hyperpolarize neurons postsynaptically via the downstream opening of GIRK channels. This pro...

متن کامل

Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input

Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the le...

متن کامل

Precisely Timed Signal Transmission in Neocortical Networks with Reliable Intermediate-Range Projections

The mammalian neocortex has a remarkable ability to precisely reproduce behavioral sequences or to reliably retrieve stored information. In contrast, spiking activity in behaving animals shows a considerable trial-to-trial variability and temporal irregularity. The signal propagation and processing underlying these conflicting observations is based on fundamental neurophysiological processes li...

متن کامل

Comparing auditory sustained attention in children with auditory processing disorder and normal children

Introduction: Auditory processing disorder (APD) is a type of abnormal perceptual processing of auditory information within the central auditory nervous system that could be influenced by cognitive factors, such as attention. Attention is one of most important cognitive functions in the development of learning in children, so it is important to recognize and evaluate a variety of attention defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2005